Ahpub - Компьютер Шаг за Шагом

Многомерное представление данных. Общая схема организации хранилища данных. Характеристики, типы и основные отличия технологий OLAP и OLTP. Схемы звезда и снежинка. Агрегирование. Аналитические системы OLAP Информационные технологии анализа данных olap

Применение OLAP системы позволяет автоматизировать стратегический уровень управления организацией. OLAP (Online Analytical Processing – аналитическая обработка данных в реальном времени) представляет собой мощную технологию обработки и исследования данных. Системы, построенные на основе технологии OLAP, предоставляют практически безграничные возможности по составлению отчетов, выполнению сложных аналитических расчетов, построению прогнозов и сценариев, разработке множества вариантов планов.

Полноценные OLAP системы появились в начале 90-х годов, как результат развития информационных систем поддержки принятия решений. Они предназначены для преобразования различных, часто разрозненных, данных, в полезную информацию. OLAP системы могут организовать данные в соответствии с некоторым набором критериев. При этом не обязательно, чтобы критерии имели четкие характеристики.

Свое применение OLAP системы нашли во многих вопросах стратегического управления организацией: управление эффективностью бизнеса, стратегическое планирование, бюджетирование, прогнозирование развития, подготовка финансовой отчетности, анализ работы, имитационное моделирование внешней и внутренней среды организации, хранение данных и отчетности.

Структура OLAP системы

В основе работы OLAP системы лежит обработка многомерных массивов данных. Многомерные массивы устроены так, что каждый элемент массива имеет множество связей с другими элементами. Чтобы сформировать многомерный массив, OLAP система должна получить исходные данные из других систем (например, ERP или CRM системы), или через внешний ввод. Пользователь OLAP системы получает необходимые данные в структурированном виде в соответствии со своим запросом. Исходя из указанного порядка действий, можно представить структуру OLAP системы.

В общем виде, структура OLAP системы состоит из следующих элементов:

  • база данных . База данных является источником информации для работы OLAP системы. Вид базы данных зависит от вида OLAP системы и алгоритмов работы OLAP сервера. Как правило, используются реляционные базы данных, многомерные базы данных, хранилища данных и т.п.
  • OLAP сервер . Он обеспечивает управление многомерной структурой данных и взаимосвязь между базой данных и пользователями OLAP системы.
  • пользовательские приложения . Этот элемент структуры OLAP системы осуществляет управление запросами пользователей и формирует результаты обращения к базе данных (отчеты, графики, таблицы и пр.)

В зависимости от способа организации, обработки и хранения данных, OLAP системы могут быть реализованы на локальных компьютерах пользователей или с использованием выделенных серверов.

Существует три основных способа хранения и обработки данных:

  • локально . Данные размещаются на компьютерах пользователей. Обработка, анализ и управление данными выполняется на локальных рабочих местах. Такая структура OLAP системы имеет существенные недостатки, связанные со скоростью обработки данных, защищенностью данных и ограниченным применением многомерного анализа.
  • реляционные базы данных . Эти базы данных используются при совместной работе OLAP системы с CRM системой или ERP системой . Данные хранятся на сервере этих систем в виде реляционных баз данных или хранилищ данных. OLAP сервер обращается к этим базам данных для формирования необходимых многомерных структур и проведения анализа.
  • многомерные базы данных . В этом случае данные организованы в виде специального хранилища данных на выделенном сервере. Все операции с данными осуществляются на этом сервере, который преобразует исходные данные в многомерные структуры. Такие структуры называют OLAP кубом. Источниками данных для формирования OLAP куба являются реляционные базы данных и/или клиентские файлы. Сервер данных осуществляет предварительную подготовку и обработку данных. OLAP сервер работает с OLAP кубом не имея непосредственного доступа к источникам данных (реляционным базам данных, клиентским файлам и др.).

Виды OLAP систем

В зависимости от метода хранения и обработки данных все OLAP системы могут быть разделены на три основных вида.


1. ROLAP (Relational OLAP – реляционные OLAP системы) – этот вид OLAP системы работает с реляционными базами данных. Обращение к данным осуществляется напрямую в реляционную базу данных. Данные хранятся в виде реляционных таблиц. Пользователи имеют возможность осуществлять многомерный анализ как в традиционных OLAP системах. Это достигается за счет применения инструментов SQL и специальных запросов.

Одним из преимуществ ROLAP является возможность более эффективно осуществлять обработку большого объема данных. Другим преимуществом ROLAP является возможность эффективной обработки как числовых, так и текстовых данных.

К недостаткам ROLAP относится низкая производительность (по сравнению с традиционными OLAP системами), т.к. обработку данных осуществляет сервер OLAP. Другим недостатком является ограничение функциональности из-за применения SQL.


2. MOLAP (Multidimensional OLAP – многомерные OLAP системы). Этот вид OLAP систем относится к традиционным системам. Отличие традиционной OLAP системы, от других систем, заключается в предварительной подготовке и оптимизации данных. Эти системы, как правило, используют выделенный сервер, на котором осуществляется предварительная обработка данных. Данные формируются в многомерные массивы – OLAP кубы.

MOLAP системы являются самыми эффективными при обработке данных, т.к. они позволяют легко реорганизовать и структурировать данные под различные запросы пользователей. Аналитические инструменты MOLAP позволяют выполнять сложные расчеты. Другим преимуществом MOLAP является возможность быстрого формирования запросов и получения результатов. Это обеспечивается за счет предварительного формирования OLAP кубов.

К недостаткам MOLAP системы относится ограничение объемов обрабатываемых данных и избыточность данных, т.к. для формирования многомерных кубов, по различным аспектам, данные приходится дублировать.


3. HOLAP (Hybrid OLAP – гибридные OLAP системы). Гибридные OLAP системы представляют собой объединение систем ROLAP и MOLAP. В гибридных системах постарались объединить преимущества двух систем: использование многомерных баз данных и управление реляционными базами данных. HOLAP системы позволяют хранить большое количество данных в реляционных таблицах, а обрабатываемые данные размещаются в предварительно построенных многомерных OLAP кубах. Преимущества этого вида систем заключаются в масштабируемости данных, быстрой обработке данных и гибком доступе к источникам данных.

Существуют и другие виды OLAP систем, но они в большей степени являются маркетинговым ходом производителей, чем самостоятельным видом OLAP системы.

К таким видам относятся:

  • WOLAP (Web OLAP). Вид OLAP системы с поддержкой web интерфейса. В этих системах OLAP есть возможность обращаться к базам данных через web интерфейс.
  • DOLAP (Desktop OLAP). Этот вид OLAP системы дает возможность пользователям загрузить на локальное рабочее место базу данных и работать с ней локально.
  • MobileOLAP . Это функция OLAP систем, которая позволяет работать с базой данных удаленно, с использованием мобильных устройств.
  • SOLAP (Spatial OLAP). Этот вид OLAP систем предназначен для обработки пространственных данных. Он появился как результат интеграции географических информационных систем и OLAP системы. Эти системы позволяют обрабатывать данные не только в буквенно-цифровом формате, но и в виде визуальных объектов и векторов.

Преимущества OLAP системы

Применение OLAP системы дает организации возможности по прогнозированию и анализу различных ситуаций, связанных с текущей деятельностью и перспективами развития. Эти системы можно рассматривать как дополнение к системам автоматизации уровня предприятия. Все преимущества OLAP систем напрямую зависят от точности, достоверности и объема исходных данных.

Основными преимуществами OLAP системы являются:

  • согласованность исходной информации и результатов анализа . При наличии OLAP системы всегда есть возможность проследить источник информации и определить логическую связь между полученными результатами и исходными данными. Снижается субъективность результатов анализа.
  • проведение многовариантного анализа . Применение OLAP системы позволяет получить множество сценариев развития событий на основе набора исходных данных. За счет инструментов анализа можно смоделировать ситуации по принципу «что будет, если».
  • управление детализацией . Детальность представления результатов может изменяться в зависимости от потребности пользователей. При этом нет необходимости осуществлять сложные настройки системы и повторять вычисления. Отчет может содержать именно ту информацию, которая необходима для принятия решений.
  • выявление скрытых зависимостей . За счет построения многомерных связей появляется возможность выявить и определить скрытые зависимости в различных процессах или ситуациях, которые влияют на производственную деятельность.
  • создание единой платформы . За счет применения OLAP системы появляется возможность создать единую платформу для всех процессов прогнозирования и анализа на предприятии. В частности, данные OLAP системы, являются основой для построения прогнозов бюджета, прогноза продаж, прогноза закупок, плана стратегического развития и пр.

Условия высокой конкуренции и растущей динамики внешней среды диктуют повышенные требования к системам управления предприятия. Развитие теории и практики управления сопровождались появлением новых методов, технологий и моделей, ориентированных на повышение эффективности деятельности. Методы и модели в свою очередь способствовали появлению аналитических систем. Востребованность аналитических систем в России – высокая. Наиболее интересны с точки зрения применения эти системы в финансовой сфере: банки, страховой бизнес, инвестиционные компании. Результаты работы аналитических систем необходимы в первую очередь людям, от решения которых зависит развитие компании: руководителям, экспертам, аналитикам. Аналитические системы позволяют решать задачи консолидации, отчетности, оптимизации и прогнозирования. До настоящего времени не сложилось окончательной классификации аналитических систем, как и нет общей системы определений в терминах, использующихся в данном направлении. Информационная структура предприятия может быть представлена последовательностью уровней, каждый из которых характеризуется своим способом обработки и управления информацией, и имеет свою функцию в процессе управления. Таким образом аналитические системы будут располагаться иерархически на разных уровнях этой инфраструктуры.

Уровень транзакционных систем

Уровень хранилищ данных

Уровень витрин данных

Уровень OLAP – систем

Уровень аналитических приложений

OLAP - системы - (OnLine Analytical Processing, аналитическая обработка в настоящем времени) - представляют собой технологию комплексного многомерного анализа данных. OLAP - системы применимы там, где есть задача анализа многофакторных данных. Являют собой эффективное средство анализа и генерации отчетов. Рассмотренные выше хранилища данных, витрины данных и OLAP - системы относятся к системам бизнес - интеллекта (Business Intelligence, BI).

Очень часто информационно-аналитические системы, создаваемые в расчете на непосредственное использование лицами, принимающими решения, оказываются чрезвычайно просты в применении, но жестко ограничены в функциональности. Такие статические системы называются в литературе Информационными системами руководителя (ИСР), или Executive Information Systems (EIS) . Они содержат в себе предопределенные множества запросов и, будучи достаточными для повседневного обзора, неспособны ответить на все вопросы к имеющимся данным, которые могут возникнуть при принятии решений. Результатом работы такой системы, как правило, являются многостраничные отчеты, после тщательного изучения которых у аналитика появляется новая серия вопросов. Однако каждый новый запрос, непредусмотренный при проектировании такой системы, должен быть сначала формально описан, закодирован программистом и только затем выполнен. Время ожидания в таком случае может составлять часы и дни, что не всегда приемлемо. Таким образом, внешняя простота статических СППР, за которую активно борется большинство заказчиков информационно-аналитических систем, оборачивается катастрофической потерей гибкости.



Динамические СППР, напротив, ориентированы на обработку нерегламентированных (ad hoc) запросов аналитиков к данным. Наиболее глубоко требования к таким системам рассмотрел E. F. Codd в статье , положившей начало концепции OLAP. Работа аналитиков с этими системами заключается в интерактивной последовательности формирования запросов и изучения их результатов.

Но динамические СППР могут действовать не только в области оперативной аналитической обработки (OLAP); поддержка принятия управленческих решений на основе накопленных данных может выполняться в трех базовых сферах .

Сфера детализированных данных. Это область действия большинства систем, нацеленных на поиск информации. В большинстве случаев реляционные СУБД отлично справляются с возникающими здесь задачами. Общепризнанным стандартом языка манипулирования реляционными данными является SQL. Информационно-поисковые системы, обеспечивающие интерфейс конечного пользователя в задачах поиска детализированной информации, могут использоваться в качестве надстроек как над отдельными базами данных транзакционных систем, так и над общим хранилищем данных.

Сфера агрегированных показателей. Комплексный взгляд на собранную в хранилище данных информацию, ее обобщение и агрегация, гиперкубическое представление и многомерный анализ являются задачами систем оперативной аналитической обработки данных (OLAP) . Здесь можно или ориентироваться на специальные многомерные СУБД , или оставаться в рамках реляционных технологий. Во втором случае заранее агрегированные данные могут собираться в БД звездообразного вида, либо агрегация информации может производиться на лету в процессе сканирования детализированных таблиц реляционной БД.

Сфера закономерностей. Интеллектуальная обработка производится методами интеллектуального анализа данных (ИАД, Data Mining) , главными задачами которых являются поиск функциональных и логических закономерностей в накопленной информации, построение моделей и правил, которые объясняют найденные аномалии и/или прогнозируют развитие некоторых процессов.

Оперативная аналитическая обработка данных

В основе концепции OLAP лежит принцип многомерного представления данных. В 1993 году в статье E. F. Codd рассмотрел недостатки реляционной модели, в первую очередь указав на невозможность "объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом", и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.

Классификация продуктов OLAP по способу представления данных.

В настоящее время на рынке присутствует большое количество продуктов, которые в той или иной степени обеспечивают функциональность OLAP. Около 30 наиболее известных перечислены в списке обзорного Web-сервера http://www.olapreport.com/. Обеспечивая многомерное концептуальное представление со стороны пользовательского интерфейса к исходной базе данных, все продукты OLAP делятся на три класса по типу исходной БД.

Самые первые системы оперативной аналитической обработки (например, Essbase компании Arbor Software , Oracle Express Server компании Oracle ) относились к классу MOLAP, то есть могли работать только со своими собственными многомерными базами данных. Они основываются на патентованных технологиях для многомерных СУБД и являются наиболее дорогими. Эти системы обеспечивают полный цикл OLAP-обработки. Они либо включают в себя, помимо серверного компонента, собственный интегрированный клиентский интерфейс, либо используют для связи с пользователем внешние программы работы с электронными таблицами. Для обслуживания таких систем требуется специальный штат сотрудников, занимающихся установкой, сопровождением системы, формированием представлений данных для конечных пользователей.

Системы оперативной аналитической обработки реляционных данных (ROLAP) позволяют представлять данные, хранимые в реляционной базе, в многомерной форме , обеспечивая преобразование информации в многомерную модель через промежуточный слой метаданных. ROLAP-системы хорошо приспособлены для работы с крупными хранилищами. Подобно системам MOLAP, они требуют значительных затрат на обслуживание специалистами по информационным технологиям и предусматривают многопользовательский режим работы.

Наконец, гибридные системы (Hybrid OLAP, HOLAP) разработаны с целью совмещения достоинств и минимизации недостатков, присущих предыдущим классам. К этому классу относится Media/MR компании Speedware . По утверждению разработчиков, он объединяет аналитическую гибкость и скорость ответа MOLAP с постоянным доступом к реальным данным, свойственным ROLAP.

Многомерный OLAP (MOLAP)

В специализированных СУБД, основанных на многомерном представлении данных, данные организованы не в форме реляционных таблиц, а в виде упорядоченных многомерных массивов:

1) гиперкубов (все хранимые в БД ячейки должны иметь одинаковую мерность, то есть находиться в максимально полном базисе измерений) или

2) поликубов (каждая переменная хранится с собственным набором измерений, и все связанные с этим сложности обработки перекладываются на внутренние механизмы системы).

Использование многомерных БД в системах оперативной аналитической обработки имеет следующие достоинства.

В случае использования многомерных СУБД поиск и выборка данных осуществляется значительно быстрее, чем при многомерном концептуальном взгляде на реляционную базу данных, так как многомерная база данных денормализована, содержит заранее агрегированные показатели и обеспечивает оптимизированный доступ к запрашиваемым ячейкам.

Многомерные СУБД легко справляются с задачами включения в информационную модель разнообразных встроенных функций, тогда как объективно существующие ограничения языка SQL делают выполнение этих задач на основе реляционных СУБД достаточно сложным, а иногда и невозможным.

С другой стороны, имеются существенные ограничения.

Многомерные СУБД не позволяют работать с большими базами данных. К тому же за счет денормализации и предварительно выполненной агрегации объем данных в многомерной базе, как правило, соответствует (по оценке Кодда ) в 2.5-100 раз меньшему объему исходных детализированных данных.

Многомерные СУБД по сравнению с реляционными очень неэффективно используют внешнюю память. В подавляющем большинстве случаев информационный гиперкуб является сильно разреженным, а поскольку данные хранятся в упорядоченном виде, неопределенные значения удаётся удалить только за счет выбора оптимального порядка сортировки, позволяющего организовать данные в максимально большие непрерывные группы. Но даже в этом случае проблема решается только частично. Кроме того, оптимальный с точки зрения хранения разреженных данных порядок сортировки скорее всего не будет совпадать с порядком, который чаще всего используется в запросах. Поэтому в реальных системах приходится искать компромисс между быстродействием и избыточностью дискового пространства, занятого базой данных.

Следовательно, использование многомерных СУБД оправдано только при следующих условиях.

Объем исходных данных для анализа не слишком велик (не более нескольких гигабайт), то есть уровень агрегации данных достаточно высок.

Набор информационных измерений стабилен (поскольку любое изменение в их структуре почти всегда требует полной перестройки гиперкуба).

Время ответа системы на нерегламентированные запросы является наиболее критичным параметром.

Требуется широкое использование сложных встроенных функций для выполнения кроссмерных вычислений над ячейками гиперкуба, в том числе возможность написания пользовательских функций.

Реляционный OLAP (ROLAP)

Непосредственное использование реляционных БД в системах оперативной аналитической обработки имеет следующие достоинства.

В большинстве случаев корпоративные хранилища данных реализуются средствами реляционных СУБД, и инструменты ROLAP позволяют производить анализ непосредственно над ними. При этом размер хранилища не является таким критичным параметром, как в случае MOLAP.

В случае переменной размерности задачи, когда изменения в структуру измерений приходится вносить достаточно часто, ROLAP системы с динамическим представлением размерности являются оптимальным решением, так как в них такие модификации не требуют физической реорганизации БД.

Реляционные СУБД обеспечивают значительно более высокий уровень защиты данных и хорошие возможности разграничения прав доступа.

Главный недостаток ROLAP по сравнению с многомерными СУБД - меньшая производительность. Для обеспечения производительности, сравнимой с MOLAP, реляционные системы требуют тщательной проработки схемы базы данных и настройки индексов, то есть больших усилий со стороны администраторов БД. Только при использовании звездообразных схем производительность хорошо настроенных реляционных систем может быть приближена к производительности систем на основе многомерных баз данных.

OLAP (от англ. OnLine Analytical Processing - оперативная аналитическая обработка данных, также: аналитическая обработка данных в реальном времени, интерактивная аналитическая обработка данных) - подход к аналитической обработке данных, базирующийся на их многомерном иерархическом представлении, являющийся частью более широкой области информационных технологий - бизнес-аналитики ().

Каталог OLAP-решений и проектов смотрите в разделе OLAP на TAdviser.

С точки зрения пользователя, OLAP -системы представляют средства гибкого просмотра информации в различных срезах, автоматического получения агрегированных данных, выполнения аналитических операций свёртки, детализации, сравнения во времени. Всё это делает OLAP-системы решением с очевидными преимуществами в области подготовки данных для всех видов бизнес-отчетности, предполагающих представление данных в различных разрезах и разных уровнях иерархии - например, отчетов по продажам, различных форм бюджетов и так далее. Очевидны плюсы подобного представления и в других формах анализа данных, в том числе для прогнозирования.

Требования к OLAP-системам. FASMI

Ключевое требование, предъявляемое к OLAP-системам - скорость, позволяющая использовать их в процессе интерактивной работы аналитика с информацией. В этом смысле OLAP-системы противопоставляются, во-первых, традиционным РСУБД , выборки из которых с типовыми для аналитиков запросами, использующими группировку и агрегирование данных, обычно затратны по времени ожидания и загрузке РСУБД , поэтому интерактивная работа с ними при сколько-нибудь значительных объемах данных сложна. Во-вторых, OLAP-системы противопоставляются и обычному плоскофайловому представлению данных, например, в виде часто используемых традиционных электронных таблиц, представление многомерных данных в которых сложно и не интуитивно, а операции по смене среза - точки зрения на данные - также требуют временных затрат и усложняют интерактивную работу с данными.

При этом, с одной стороны, специфичные для OLAP-систем требования к данным обычно подразумевают хранение данных в специальных оптимизированных под типовые задачи OLAP структурах, с другой сторны, непосредственное извлечение данных из существующих систем в процессе анализа привело бы к существенному падению их производительности.

Следовательно, важным требованием является обеспечение макимально гибкой связки импорта-экспорта между существующими системами, выступающими в качестве источника данных и OLAP-системой, а также OLAP-системой и внешними приложениями анализа данных и отчетности.

При этом такая связка должна удовлетворять очевидным требованиям поддержки импорта-экспорта из нескольких источников данных, осуществления процедур очистки и трансформации данных, унификации используемых классификаторов и справочников. Кроме того, к этим требованиям добавляется необходимость учёта различных циклов обновления данных в существующих информационных системах и унификации требуемого уровня детализации данных. Сложность и многогранность этой проблемы привела к появлению концепции хранилищ данных , и, в узком смысле, к выделению отдельного класса утилит конвертации и преобразования данных - ETL (Extract Transform Load) .

Модели хранения активных данных

Выше мы указали, что OLAP предполагает многомерное иерархическое представление данных, и, в каком-то смысле, противопоставляется базирующимся на РСУБД системам.

Это, однако, не значит, что все OLAP-системы используют многомерную модель для хранения активных, "рабочих" данных системы. Так как модель хранения активных данных оказывает влияние на все диктуемые FASMI-тестом требования, её важность подчёркивается тем, что именно по этому признаку традиционно выделяют подтипы OLAP - многомерный (MOLAP), реляционный (ROLAP) и гибридный (HOLAP).

Вместе с тем, некоторые эксперты, во главе с вышеупомянутым Найджелом Пендсом , указывают, что классификация, базирующаяся на одном критерии недостаточно полна. Тем более, что подавляющее большинство существующих OLAP-систем будут относиться к гибридному типу. Поэтому мы более подробно остановимся именно на моделях хранения активных данных, упомянув, какие из них соответствуют каким из традиционных подтипов OLAP.

Хранение активных данных в многомерной БД

В этом случае данные OLAP хранятся в многомерных СУБД , использующих оптимизированные для такого типа данных конструкции. Обычно многомерные СУБД поддерживают и все типовые для OLAP операции, включая агрегацию по требуемым уровням иерархии и так далее.

Этот тип хранения данных в каком-то смысле можно назвать классическим для OLAP. Для него, впрочем, в полной мере необходимы все шаги по предварительной подготовке данных. Обычно данные многомерной СУБД хранятся на диске, однако, в некоторых случаях, для ускорения обработки данных такие системы позволяют хранить данные в оперативной памяти . Для тех же целей иногда применяется и хранение в БД заранее рассчитанных агрегатных значений и прочих расчётных величин.

Многомерные СУБД , полностью поддерживающие многопользовательский доступ с конкурирующими транзакциями чтения и записи достаточно редки, обычным режимом для таких СУБД является однопользовательский с доступом на запись при многопользовательском на чтение, либо многопользовательский только на чтение.

Среди условных недостатков, характерных для некоторых реализаций многомерных СУБД и базирующихся на них OLAP-систем можно отметить их подверженность непредсказуемому с пользовательской точки зрения росту объёмов занимаемого БД места. Этот эффект вызван желанием максимально уменьшить время реакции системы, диктующим хранить заранее рассчитанные значения агрегатных показателей и иных величин в БД, что вызывает нелинейный рост объёма хранящейся в БД информации с добавлением в неё новых значений данных или измерений.

Степень проявления этой проблемы, а также связанных с ней проблем эффективного хранения разреженных кубов данных, определяется качеством применяемых подходов и алгоритмов конкретных реализаций OLAP-систем.

Хранение активных данных в реляционной БД

Могут храниться данные OLAP и в традиционной РСУБД . В большинстве случаев этот подход используется при попытке «безболезненной» интеграции OLAP с существующими учётными системами, либо базирующимися на РСУБД хранилищами данных . Вместе с тем, этот подход требует от РСУБД для обеспечения эффективного выполнения требований FASMI-теста (в частности, обеспечения минимального времени реакции системы) некоторых дополнительных возможностей. Обычно данные OLAP хранятся в денормализованном виде, а часть заранее рассчитанных агрегатов и значений хранится в специальных таблицах. При хранении же в нормализованном виде эффективность РСУБД в качестве метода хранения активных данных снижается.

Проблема выбора эффективных подходов и алгоритмов хранения предрассчитанных данных также актуальна для OLAP-систем, базирующихся на РСУБД, поэтому производители таких систем обычно акцентируют внимание на достоинствах применяемых подходов.

В целом считается, что базирующиеся на РСУБД OLAP-системы медленнее систем, базирующихся на многомерных СУБД, в том числе за счет менее эффективных для задач OLAP структур хранения данных, однако на практике это зависит от особенностей конкретной системы.

Среди достоинств хранения данных в РСУБД обычно называют большую масштабируемость таких систем.

Хранение активных данных в «плоских» файлах

Этот подход предполагает хранение порций данных в обычных файлах. Обычно он используется как дополнение к одному из двух основных подходов с целью ускорения работы за счет кэширования актуальных данных на диске или в оперативной памяти клиентского ПК.

Гибридный подход к хранению данных

Большинство производителей OLAP-систем, продвигающих свои комплексные решения, часто включающие помимо собственно OLAP-системы СУБД , инструменты ETL (Extract Transform Load) и отчетности, в настоящее время используют гибридный подход к организации хранения активных данных системы, распределяя их тем или иным образом между РСУБД и специализированным хранилищем, а также между дисковыми структурами и кэшированием в оперативной памяти.

Так как эффективность такого решения зависит от конкретных подходов и алгоритмов, применяемых производителем для определения того, какие данные и где хранить , то поспешно делать выводы о изначально большей эффективности таких решений как класса без оценки конкретных особенностей рассматриваемой системы.

OLAP (англ. on-line analytical processing) – совокупность методов динамической обработки многомерных запросов в аналитических базах данных. Такие источники данных обычно имеют довольно большой объем, и в применяемых для их обработки средствах одним из наиболее важных требований является высокая скорость. В реляционных БД информация хранится в отдельных таблицах, которые хорошо нормализованы. Но сложные многотабличные запросы в них выполняются довольно медленно. Значительно лучшие показатели по скорости обработки в OLAP-системах достигаются за счет особенности структуры хранения данных. Вся информация четко организована, и применяются два типа хранилищ данных: измерения (содержат справочники, разделенные по категориям, например, точки продаж, клиенты, сотрудники, услуги и т.д.) и факты (характеризуют взаимодействие элементов различных измерений, например, 3 марта 2010 г. продавец A оказал услугу клиенту Б в магазине В на сумму Г денежных единиц). Для вычисления результатов в аналитическом кубе применяются меры. Меры представляют собой совокупности фактов, агрегированных по соответствующим выбранным измерениям и их элементам. Благодаря этим особенностям на сложные запросы с многомерными данными затрачивается гораздо меньшее время, чем в реляционных источниках.

Одним из основных вендоров OLAP-систем является корпорация Microsoft . Рассмотрим реализацию принципов OLAP на практических примерах создания аналитического куба в приложениях Microsoft SQL Server Business Intelligence Development Studio (BIDS) и Microsoft Office PerformancePoint Server Planning Business Modeler (PPS) и ознакомимся с возможностями визуального представления многомерных данных в виде графиков, диаграмм и таблиц.

Например, в BIDS необходимо создать OLAP-куб по данным о страховой компании, ее работниках, партнерах (клиентах) и точках продаж. Допустим предположение, что компания предоставляет один вид услуг, поэтому измерение услуг не понадобится.

Сначала определим измерения. С деятельности компании связаны следующие сущности (категории данных):

  • Точки продаж
    - Сотрудники
    - Партнеры
Также создаются измерения Время и Сценарий, которые являются обязательными для любого куба.
Далее необходима одна таблица для хранения фактов (таблица фактов).
Информация в таблицы может вноситься вручную, но наиболее распространена загрузка данных с применением мастера импорта из различных источников.
На следующем рисунке представлена последовательность процесса создания и заполнения таблиц измерений и фактов вручную:

Рис.1. Таблицы измерений и фактов в аналитической БД. Последовательность создания
После создания многомерного источника данных в BIDS имеется возможность просмотреть его представление (Data Source View). В нашем примере получится схема, представленная на рисунке ниже.


Рис.2. Представление источника данных (Data Source View) в Business Intellingence Development Studio (BIDS)

Как видим, таблица фактов связана с таблицами измерений посредством однозначного соответствия полей-идентификаторов (PartnerID, EmployeeID и т.д.).

Посмотрим на результат. На вкладке обозревателя куба, перетаскивая меры и измерения в поля итогов, строк, столбцов и фильтров, можем получить представление интересующих данных (к примеру, заключенные сделки по страховым договорам, заключенные определенным работником в 2005 году).

ведение

В последнее время много написано про OLAP. Можно сказать, что наблюдается некоторый бум вокруг этих технологий. Правда, для нас этот бум несколько запоздал, но связано это, конечно, с общей ситуацией в стране.

Информационные системы масштаба предприятия, как правило, содержат приложения, предназначенные для комплексного многомерного анализа данных, их динамики, тенденций и т.п. Такой анализ в конечном итоге призван содействовать принятию решений. Нередко эти системы так и называются – системы поддержки принятия решений.

Системы поддержки принятия решений обычно обладают средствами предоставления пользователю агрегатных данных для различных выборок из исходного набора в удобном для восприятия и анализа виде. Как правило, такие агрегатные функции образуют многомерный (и, следовательно, нереляционный) набор данных (нередко называемый гиперкубом или метакубом), оси которого содержат параметры, а ячейки – зависящие от них агрегатные данные – причем храниться такие данные могут и в реляционных таблицах, но в данном случае мы говорим о логической организации данных, а не о физической реализации их хранения). Вдоль каждой оси данные могут быть организованы в виде иерархии, представляющей различные уровни их детализации. Благодаря такой модели данных пользователи могут формулировать сложные запросы, генерировать отчеты, получать подмножества данных.

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing).

OLAP – это ключевой компонент организации хранилищ данных.

Концепция OLAP была описана в 1993 году Эдгаром Коддом, известным исследователем баз данных и автором реляционной модели данных (см. E.F. Codd, S.B. Codd, and C.T.Salley, Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate. Technical report, 1993).

В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information – быстрый анализ разделяемой многомерной информации), включающий следующие требования к приложениям для многомерного анализа:

· предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;

· возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;

· многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;

· многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это – ключевое требование OLAP);

· возможность обращаться к любой нужной информации независимо от ее объема и места хранения.

Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах. Пользователи могут легко рассматривать данные на многомерной структуре в применении к собственным задачам.

2. Что такое OLAP

OLAP – аббревиатура от английского On-Line Analytical Processing – это название не конкретного продукта, а целой технологии. По-русски удобнее всего называть OLAP оперативной аналитической обработкой. Хотя в некоторых изданиях аналитическую обработку называют и онлайновой, и интерактивной, однако прилагательное “оперативная” как нельзя более точно отражает смысл технологии OLAP.

Разработка руководителем решений по управлению попадает в разряд областей наиболее сложно поддающихся автоматизации. Однако сегодня имеется возможность оказать помощь управленцу в разработке решений и, самое главное, значительно ускорить сам процесс разработки решений, их отбора и принятия. Для этого можно использовать OLAP.

Рассмотрим, как обычно происходит процесс разработки решений.

Исторически сложилось так, что решения по автоматизации оперативной деятельности наиболее развиты. Речь идет о системах транзакционной обработки данных (OLTP), проще называемых оперативными системами. Эти системы обеспечивают регистрацию некоторых фактов, их непродолжительное хранение и сохранение в архивах. Основу таких систем обеспечивают системы управления реляционными базами данных (РСУБД). Традиционным подходом являются попытки использовать уже построенные оперативные системы для поддержки принятия решений. Обычно пытаются строить развитую систему запросов к оперативной системе и использовать полученные после интерпретации отчеты непосредственно для поддержки решений. Отчеты могут строиться на заказной базе, т.е. руководитель запрашивает отчет, и на регулярной, когда отчеты строятся по достижении некоторых событий или времени. Например, традиционный процесс поддержки принятия решений может выглядеть таким образом: руководитель идет к специалисту информационного отдела и делится с ним своим вопросом. Затем специалист информационного отдела строит запрос к оперативной системе, получает электронный отчет, интерпретирует его и затем доводит его до сведения руководящего персонала. Конечно, такая схема обеспечивает в какой-то мере поддержку принятия решений, но она имеет крайне низкую эффективность и огромное число недостатков. Ничтожное количество данных используется для поддержки критически важных решений. Есть и другие проблемы. Подобный процесс очень медленен, так как длителен сам процесс написания запросов и интерпретации электронного отчета. Он занимает многие дни, в то время, когда руководителю может быть необходимо принять решение прямо сейчас, немедленно. Если учесть, что руководителя после получения отчета может заинтересовать другой вопрос (скажем, уточняющий или требующий рассмотрения данных в другом разрезе), то этот медленный цикл должен повториться, а поскольку процесс анализа данных оперативных систем будет происходить итерационно, то времени тратится ещё больше. Другая проблема – проблема различных областей деятельности специалиста по информационным технологиям и руководителя, которые могут мыслить в разных категориях и, как следствие, – не понимать друг друга. Тогда потребуются дополнительные уточняющие итерации, а это снова время, которого всегда не хватает. Ещё одной важной проблемой является сложность отчетов для понимания. У руководителя нет времени выбирать интересующие цифры из отчёта, тем более что их может оказаться слишком много (вспомним огромные многостраничные отчеты, в которых реально используются несколько страниц, а остальные – на всякий случай). Отметим также, что работа по интерпретации ложится чаще всего на специалистов информационных отделов. То есть грамотный специалист отвлекается на рутинную и малоэффективную работу по рисованию диаграмм и т.п., что, естественно, не может благоприятно сказываться на его квалификации. Кроме того, не является секретом присутствие в цепочке интерпретации благожелателей, заинтересованных в преднамеренном искажении поступающей информации.

Вышеуказанные недостатки заставляют задуматься и об общей эффективности оперативной системы, и о затратах, связанных с ее существованием, так как оказывается, что затраты на создание оперативной системы не окупаются в должной степени эффективностью ее работы.

В действительности проблемы эти не являются следствием низкого качества оперативной системы или ее неудачной постройки. Корни проблем кроются в фундаментальном отличии той оперативной деятельности, которая автоматизируется оперативной системой, и деятельностью по разработке и принятию решений. Отличие это состоит в том, что данные оперативных систем являются просто записями о некоторых имевших место событиях, фактах, но никак не информацией в общем смысле этого слова. Информация – то, что снижает неопределенность в какой-либо области. И очень неплохо, если бы информация снижала неопределенность в области подготовки решений. По поводу непригодности для этой цели оперативных систем, построенных на РСУБД, в свое время высказался небезызвестный E.F. Codd, человек, стоявший в 70-е годы у истоков технологий систем управления реляционными БД: “Хотя системы управления реляционными БД доступны для пользователей, они никогда не считались средством, дающим мощные функции по синтезу, анализу и консолидации (функций, называемых многомерным анализом данных)”. Речь идет именно о синтезе информации, о том, чтобы превращать данные оперативных систем в информацию и даже в качественные оценки. OLAP позволяет выполнять такое превращение.

В основе OLAP лежит идея многомерной модели данных. Человеческое мышление многомерно по определению. Когда человек задает вопросы, он налагает ограничения, тем самым формулируя вопросы во многих измерениях, поэтому процесс анализа в многомерной модели весьма приближен к реальности человеческого мышления. По измерениям в многомерной модели откладывают факторы, влияющие на деятельность предприятия (например: время, продукты, отделения компании, географию и т.п.). Таким образом получают гиперкуб (конечно, название не очень удачно, поскольку под кубом обычно понимают фигуру с равными ребрами, что, в данном случае, далеко не так), который затем наполняется показателями деятельности предприятия (цены, продажи, план, прибыли, убытки и т.п.). Наполнение это может вестись как реальными данными оперативных систем, так и прогнозируемыми на основе исторических данных. Измерения гиперкуба могут носить сложный характер, быть иерархическими, между ними могут быть установлены отношения. В процессе анализа пользователь может менять точку зрения на данные (так называемая операция смены логического взгляда), тем самым просматривая данные в различных разрезах и разрешая конкретные задачи. Над кубами могут выполняться различные операции, включая прогнозирование и условное планирование (анализ типа “что, если”). Причем операции выполняются разом над кубами, т.е. произведение, например, даст в результате произведение-гиперкуб, каждая ячейка которого является произведением ячеек соответствующих гиперкубов-множителей. Естественно, возможно выполнение операций над гиперкубами, имеющими различное число измерений.

3. История создания OLAP-технологии

Идея обработки данных на многомерных массивах не является новой. Фактически она восходит к 1962 году, когда Ken Iverson опубликовал свою книгу “Язык программирования” (“A Programming Language”, APL). Первая практическая реализация APL состоялась в поздних шестидесятых компанией IBM. APL – это очень изящный, математически определённый язык с многомерными переменными и обрабатываемыми операциями. Он подразумевался как оригинальное мощное средство по работе с многомерными преобразованиями по сравнению с другими практическими языками программирования.

Однако идея долгое время не получала массового применения, поскольку не пришло еще время графических интерфейсов, печатающих устройств высокого качества, а отображение греческих символов требовало специальных экранов, клавиатур и печатающих устройств. Позднее английские слова иногда использовали для замены греческих операторов, однако борцы за чистоту APL пресекли попытки популяризации их любимого языка. APL также поглощал машинные ресурсы. В те дни его использование требовало больших затрат. Программы очень медленно выполнялись и, кроме того, сам их запуск обходился очень дорого. Требовалось много памяти, по тем временам просто шокирующие объемы (около 6 МБ).

Однако досада от этих первоначальных ошибок не убила идею. Она использовалась во многих деловых приложениях 70-х, 80-х годов. Многие из этих приложений имели черты современных систем аналитической обработки. Так, IBM разработала операционную систему для APL, названную VSPC, и некоторые люди считали ее идеальной средой для персонального использования, пока электронные таблицы не стали повсеместно распространены.

Но APL был слишком сложен в использовании, тем более что каждый раз появлялись несоответствия между самим языком и оборудованием, на котором делались попытки его реализации.

В 80-х годах APL стал доступен на персональных машинах, но не нашел рыночного применения. Альтернативой было программирование многомерных приложений с использованием массивов в других языках. Это было очень тяжелой задачей даже для профессиональных программистов, что вынуждало ждать следующего поколения многомерных программных продуктов.

В 1972 году несколько прикладных многомерных программных продуктов, ранее использовавшихся в учебных целях, нашли коммерческое применение: Express. Он в полностью переписанном виде остаётся и сейчас, однако оригинальные концепции 70-х годов перестали быть актуальными. Сегодня, в 90-х, Express является одной из наиболее популярных OLAP-технологий, и Oracle (r) будет продвигать его и дополнять новыми возможностями.

Больше многомерных продуктов появилось в 80-х годах. В начале десятилетия – продукт с названием Stratagem, позднее называемый Acumate (сегодня владельцем является Kenan Technologies), который еще продвигался до начала 90-х, но сегодня, в отличие от Express, практически не используется.

Comshare System W был многомерным продуктом другого стиля. Представленный в 1981 году, он был первым, где предполагалась большая ориентированность на конечного пользователя и на разработку финансовых приложений. Он привнёс много концепций, которые, правда, не были хорошо адаптированы, такие, как полностью непроцедурные правила, полноэкранный просмотр и редактирование многомерных данных, автоматическое перевычисление и пакетная интеграция с реляционными данными. Однако Comshare System W был достаточно тяжел для аппаратного обеспечения того времени по сравнению с другими продуктами и меньше использовался в будущем, продавался всё меньше, и в продукте не делалось никаких улучшений. Хотя он и сегодня доступен на UNIX, он не является клиент-серверным, что не способствует повышению его предложения на рынке аналитических продуктов. В поздних 80-х Comshare выпустил продукт для DOS, а позднее для Windows. Эти продукты назывались Commander Prism и использовали те же концепции, что и System W.

Другой творческий продукт поздних 80-х назывался Metaphor. Он предназначался для профессиональных маркетологов. Он также предложил много новых концепций, которые только сегодня начинают широко использоваться: клиент-серверные вычисления, использование многомерной модели на реляционных данных, объектно-ориентированная разработка приложений. Однако стандартное аппаратное обеспечение персональных машин тех дней не было способно работать с Metaphor и поставщики вынуждены были разрабатывать собственные стандарты на персональные машины и сети. Постепенно Metaphor стал работать удачно и на серийных персональных машинах, однако продукт был выполнен исключительно для OS/2 и имел свой собственный графический интерфейс пользователя.

Затем Metaphor заключил маркетинговый альянс с IBM, которой впоследствии и был поглощён. В середине 1994 года IBM решила интегрировать технологию Metaphor (переименованную в DIS) со своими будущими технологиями и тем самым прекратить финансирование отдельного направления, однако заказчики выразили своё неудовольствие и потребовали продолжить поддержку продукта. Поддержка была продолжена для оставшихся заказчиков, а IBM перевыпустила продукт под новым названием DIS, что, однако, не сделало его популярным. Но творческие, новаторские концепции Metaphor не были забыты и видны сегодня во многих продуктах.

В середине 80-х родился термин EIS (Executive Information System – информационная система руководителя). Первым продуктом, ясно продемонстрировавшим это направление, был Pilot’s Command Center. Это был продукт, который позволял выполнять совместные вычисления, то, что мы называем сегодня клиент-серверными вычислениями. Поскольку мощность персональных компьютеров 80-х годов была ограничена, продукт был очень “сервероцентричен”, однако этот принцип и сегодня очень популярен. Pilot недолго продавал Command Center, но предложил много концепций, которые можно узнать в сегодняшних OLAP-продуктах, включая автоматическую поддержку временных промежутков, многомерные клиент-серверные вычисления и упрощённое управление процессом анализа (мышь, чувствительные экраны и т.п.). Некоторые из этих концепций были повторно применены позднее в Pilot Analysis Server.

В конце 80-х электронные таблицы были доминирующими на рынке инструментов, предоставляющих анализ конечным пользователям. Первая многомерная электронная таблица была представлена продуктом Compete. Он продвигался на рынок как очень дорогой продукт для специалистов, но поставщики не обеспечили возможность захвата рынка этим продуктом, и компания Computer Associates приобрела права на него вместе с другими продуктами, включая Supercalc и 20/20. Основным эффектом от приобретения CA Compete было резкое снижение цены на него и снятие защиты от копирования, что, естественно, способствовало его распространению. Однако он не был удачным. Compete положен в основу Supercalc 5, но многомерный аспект его не продвигается. Старый Compete всё ещё иногда используют в связи с тем, что в свое время в него были вложены немалые средства.

Компания Lotus была следующей, кто попытался войти на рынок многомерных электронных таблиц с продуктом Improv, который запускается на NeXT машине. Это гарантировало, как минимум, что продажи 1-2-3 не снизятся, но когда тот со временем был выпущен под Windows, Excel уже имел большую долю рынка, что не позволило Lotus внести какие-либо изменения в распределение рынка. Lotus, подобно CA с Compete, переместила Improv в нижнюю часть рынка, однако и это не стало условием удачного продвижения на рынке, и новые разработки в этой области не получили продолжения. Оказалось, что пользователи персональных компьютеров предпочли электронные таблицы 1-2-3 и не интересуются новыми многомерными возможностями, если они не полностью совместимы с их старыми таблицами. Так же концепции маленьких, настольных электронных таблиц, предлагаемых как персональные приложения, в действительности не оказались удобными и не прижились в настоящем деловом мире. Microsoft (r) пошла по этому пути, добавив PivotTables (в русской редакции это называется “сводные таблицы”) к Excel. Хотя немногие пользователи Excel получили выгоду от использования этой возможности, это, вероятно, единственный факт широкого использования в мире возможностей многомерного анализа просто потому, что в мире очень много пользователей Excel.

4. OLAP, ROLAP, MOLAP…

Общеизвестно, что когда Кодд опубликовал в 1985 году свои правила построения реляционных СУБД, они вызвали бурную реакцию и впоследствии сильно отразились вообще на индустрии СУБД. Однако мало кто знает, что в 1993 году Кодд опубликовал труд под названием “OLAP для пользователей-аналитиков: каким он должен быть”. В нем он изложил основные концепции оперативной аналитической обработки и определил 12 правил, которым должны удовлетворять продукты, предоставляющие возможность выполнения оперативной аналитической обработки.

Вот эти правила (текст оригинала сохранен по возможности):

1. Концептуальное многомерное представление. Пользователь-аналитик видит мир предприятия многомерным по своей природе. Соответственно и OLAP-модель должна быть многомерной в своей основе. Многомерная концептуальная схема или пользовательское представление облегчают моделирование и анализ так же, впрочем, как и вычисления.

2. Прозрачность. Вне зависимости от того, является OLAP-продукт частью средств пользователя или нет, этот факт должен быть прозрачен для пользователя. Если OLAP предоставляется клиент-серверными вычислениями, то этот факт также, по возможности, должен быть незаметен для пользователя. OLAP должен предоставляться в контексте истинно открытой архитектуры, позволяя пользователю, где бы он ни находился, связываться при помощи аналитического инструмента с сервером. В дополнение прозрачность должна достигаться и при взаимодействии аналитического инструмента с гомогенной и гетерогенной средами БД.

3. Доступность. Пользователь-аналитик OLAP должен иметь возможность выполнять анализ, базирующийся на общей концептуальной схеме, содержащей данные всего предприятия в реляционной БД, также как и данные из старых наследуемых БД, на общих методах доступа и на общей аналитической модели. Это значит, что OLAP должен предоставлять свою собственную логическую схему для доступа в гетерогенной среде БД и выполнять соответствующие преобразования для предоставления данных пользователю. Более того, необходимо заранее позаботиться о том, где и как, и какие типы физической организации данных действительно будут использоваться. OLAP-система должна выполнять доступ только к действительно требующимся данным, а не применять общий принцип “кухонной воронки”, который влечет ненужный ввод.

4. Постоянная производительность при разработке отчетов. Если число измерений или объем базы данных увеличиваются, пользователь-аналитик не должен чувствовать какой-либо существенной деградации в производительности. Постоянная производительность является критичной при поддержке для конечного пользователя легкости в использовании и ограничения сложности OLAP. Если пользователь-аналитик будет испытывать существенные различия в производительности в соответствии с числом измерений, тогда он будет стремиться компенсировать эти различия стратегией разработки, что вызовет представление данных другими путями, но не теми, которыми действительно нужно представить данные. Затраты времени на обход системы для компенсации ее неадекватности – это не то, для чего аналитические продукты предназначены.

5. Клиент-серверная архитектура. Большинство данных, которые сегодня требуется подвергать оперативной аналитической обработке, содержатся на мэйнфреймах с доступом через ПК. Это означает, следовательно, что OLAP-продукты должны быть способны работать в среде клиент-сервер. С этой точки зрения является необходимым, чтобы серверный компонент аналитического инструмента был существенно “интеллектуальным”, чтобы различные клиенты могли присоединяться к серверу с минимальными затруднениями и интеграционным программированием. “Интеллектуальный” сервер должен быть способен выполнять отображение и консолидацию между несоответствующими логическими и физическими схемами баз данных. Это обеспечит прозрачность и построение общей концептуальной, логической и физической схемы.

6. Общая многомерность. Каждое измерение должно применяться безотносительно своей структуры и операционных способностей. Дополнительные операционные способности могут предоставляться выбранным измерениям, и, поскольку измерения симметричны, отдельно взятая функция может быть предоставлена любому измерению. Базовые структуры данных, формулы и форматы отчетов не должны смещаться в сторону какого-либо измерения.

7. Динамическое управление разреженными матрицами. Физическая схема OLAP-инструмента должна полностью адаптироваться к специфической аналитической модели для оптимального управления разреженными матрицами. Для любой взятой разреженной матрицы существует одна и только одна оптимальная физическая схема. Эта схема предоставляет максимальную эффективность по памяти и операбельность матрицы, если, конечно, весь набор данных не помещается в памяти. Базовые физические данные OLAP-инструмента должны конфигурироваться к любому подмножеству измерений, в любом порядке, для практических операций с большими аналитическими моделями. Физические методы доступа также должны динамически меняться и содержать различные типы механизмов, таких как: непосредственные вычисления, B-деревья и производные, хеширование, возможность комбинировать эти механизмы при необходимости. Разреженность (измеряется в процентном отношении пустых ячеек ко всем возможным) – это одна из характеристик распространения данных. Невозможность регулировать разреженность может сделать эффективность операций недостижимой. Если OLAP-инструмент не может контролировать и регулировать распространение значений анализируемых данных, модель, претендующая на практичность, базирующаяся на многих путях консолидации и измерениях, в действительности может оказаться ненужной и безнадежной.

8. Многопользовательская поддержка. Часто несколько пользователей-аналитиков испытывают потребность работать совместно с одной аналитической моделью или создавать различные модели из единых данных. Следовательно, OLAP-инструмент должен предоставлять возможности совместного доступа (запроса и дополнения), целостности и безопасности.

9. Неограниченные перекрестные операции. Различные уровни свертки и пути консолидации, вследствие их иерархической природы, представляют зависимые отношения в OLAP-модели или приложении. Следовательно, сам инструмент должен подразумевать соответствующие вычисления и не требовать от пользователя-аналитика вновь определять эти вычисления и операции. Вычисления, не следующие из этих наследуемых отношений, требуют определения различными формулами в соответствии с некоторым применяющимся языком. Такой язык может позволять вычисления и манипуляцию с данными любых размерностей и не ограничивать отношения между ячейками данных, не обращать внимания на количество общих атрибутов данных конкретных ячеек.

10. Интуитивная манипуляция данными. Переориентация путей консолидации, детализация, укрупнение и другие манипуляции, регламентируемые путями консолидации, должны применяться через отдельное воздействие на ячейки аналитической модели, а также не должны требовать использования системы меню или иных множественных действий с пользовательским интерфейсом. Взгляд пользователя-аналитика на измерения, определенный в аналитической модели, должен содержать всю необходимую информацию, чтобы выполнять вышеуказанные действия.

11. Гибкие возможности получения отчетов. Анализ и представление данных являются простыми, когда строки, столбцы и ячейки данных, которые будут визуально сравниваться между собой, будут находиться вблизи друг друга или по некоторой логической функции, имеющей место на предприятии. Средства формирования отчетов должны представлять синтезируемые данные или информацию, следующую из модели данных в ее любой возможной ориентации. Это означает, что строки, столбцы или страницы должны показывать одновременно от 0 до N измерений, где N – число измерений всей аналитической модели. В дополнение каждое измерение содержимого, показанное в одной записи, колонке или странице, должно также быть способно показать любое подмножество элементов (значений), содержащихся в измерении, в любом порядке.

12. Неограниченная размерность и число уровней агрегации. Исследование о возможном числе необходимых измерений, требующихся в аналитической модели, показало, что одновременно может использоваться до 19 измерений. Отсюда вытекает настоятельная рекомендация, чтобы аналитический инструмент был способен предоставить хотя бы 15 измерений одновременно и предпочтительно 20. Более того, каждое из общих измерений не должно быть ограничено по числу определяемых пользователем-аналитиком уровней агрегации и путей консолидации.

Фактически сегодня разработчики OLAP-продуктов следуют этим правилам или, по крайней мере, стремятся им следовать. Эти правила можно считать теоретическим базисом оперативной аналитической обработки, с ними трудно спорить. Впоследствии было выведено множество следствий из 12 правил, которые мы, однако, не будем приводить, дабы излишне не усложнять повествование.

Остановимся несколько подробнее на том, как отличаются OLAP-продукты по своей физической реализации.

Как уже отмечалось выше, в основе OLAP лежит идея обработки данных на многомерных структурах. Когда мы говорим OLAP, мы подразумеваем, что логически структура данных аналитического продукта многомерна. Другое дело, как именно это реализовано. Различают два основных вида аналитической обработки, к которым относят те или иные продукты.

MOLAP. Собственно многомерная (multidimensional) OLAP. В основе продукта лежит нереляционная структура данных, обеспечивающая многомерное хранение, обработку и представление данных. Соответственно и базы данных называют многомерными. Продукты, относящиеся к этому классу, обычно имеют сервер многомерных баз данных. Данные в процессе анализа выбираются исключительно из многомерной структуры. Подобная структура является высокопроизводительной.

ROLAP. Реляционная (relational) OLAP. Как и подразумевается названием, многомерная структура в таких инструментах реализуется реляционными таблицами. А данные в процессе анализа, соответственно, выбираются из реляционной базы данных аналитическим инструментом.

Недостатки и преимущества каждого подхода, в общем-то, очевидны. Многомерная OLAP обеспечивает лучшую производительность, но структуры нельзя использовать для обработки больших объемов данных, поскольку большая размерность потребует больших аппаратных ресурсов, а вместе с тем разреженность гиперкубов может быть очень высокой и, следовательно, использование аппаратных мощностей не будет оправданным. Наоборот, реляционная OLAP обеспечивает обработку на больших массивах хранимых данных, так как возможно обеспечение более экономичного хранения, но, вместе с тем, значительно проигрывает в скорости работы многомерной. Подобные рассуждения привели к выделению нового класса аналитических инструментов – HOLAP. Это гибридная (hybrid) оперативная аналитическая обработка. Инструменты этого класса позволяют сочетать оба подхода – реляционного и многомерного. Доступ может вестись как к данным многомерных баз, так и к данным реляционных.

Есть еще один достаточно экзотический вид оперативной аналитической обработки – DOLAP. Это “настольный” (desktop) OLAP. Речь идет о такой аналитической обработке, где гиперкубы малы, размерность их небольшая, потребности скромны, и для такой аналитической обработки достаточно персональной машины на рабочем столе.

Оперативная аналитическая обработка позволяет значительно упростить и ускорить процесс подготовки и принятия решений руководящим персоналом. Оперативная аналитическая обработка служит цели превращения данных в информацию. Она принципиально отличается от традиционного процесса поддержки принятия решений, основанного, чаще всего, на рассмотрении структурированных отчетов. По аналогии, разница между структурированными отчетами и OLAP такая, как между ездой по городу на трамвае и на личном автомобиле. Когда вы едете на трамвае, он двигается по рельсам, что не позволяет хорошо рассмотреть отдаленные здания и тем более приблизиться к ним. Наоборот, езда на личном автомобиле дает полную свободу передвижения (естественно, следует соблюдать ПДД). Можно подъехать к любому зданию и добраться до тех мест, где трамваи не ходят.

Структурированные отчеты – это те рельсы, которые сдерживают свободу в подготовке решений. OLAP – автомобиль для эффективного движения по информационным магистралям.

С концепцией многомерного анализа данных тесно связывают оперативный анализ, который выполняется средствами OLAP-систем.

OLAP (On-Line Analytical Processing) -- технология оперативной аналитической обработки данных, использующая методы и средства для сбора, хранения и анализа многомерных данных в целях поддержки процессов принятия решений.

Основное назначение OLAP-систем -- поддержка аналитической деятельности, произвольных (часто используется термин ad-hoc) запросов пользователей-аналитиков. Цель OLAP-анализа -- проверка возникающих гипотез.

У истоков технологии OLAP стоит основоположник реляционного подхода Э. Кодд. В 1993 г. он опубликовал статью под названием «OLAP для пользователей-аналитиков: каким он должен быть». В данной работе изложены основные концепции оперативной аналитической обработки и определены следующие 12 требований, которым должны удовлетворять продукты, позволяющие выполнять оперативную аналитическую обработку. Токмаков Г.П. Базы данных. Концепция баз данных, реляционная модель данных, языки SQL. С. 51

Ниже перечислены 12 правил, изложенных Коддом и определяющих OLAP.

1. Многомерность -- OLAP-система на концептуальном уровне должна представлять данные в виде многомерной модели, что упрощает процессы анализа и восприятия информации.

2. Прозрачность -- OLAP-система должна скрывать от пользователя реальную реализацию многомерной модели, способ организации, источники, средства обработки и хранения.

3. Доступность -- OLAP-система должна предоставлять пользователю единую, согласованную и целостную модель данных, обеспечивая доступ к данным независимо оттого, как и где они хранятся.

4. Постоянная производительность при разработке отчетов -- производительность OLAP-систем не должна значительно уменьшаться при увеличении количества измерений, по которым выполняется анализ.

5. Клиент-серверная архитектура -- OLAP-система должна быть способна работать в среде «клиент-сервер», т.к. большинство данных, которые сегодня требуется подвергать оперативной аналитической обработке, хранятся распределенно. Главной идеей здесь является то, что серверный компонент инструмента OLAP должен быть достаточно интеллектуальным и позволять строить общую концептуальную схему на основе обобщения и консолидации различных логических и физических схем корпоративных БД для обеспечения эффекта прозрачности.

6. Равноправие измерений -- OLAP-система должна поддерживать многомерную модель, в которой все измерения равноправны. При необходимости дополнительные характеристики могут быть предоставлены отдельным измерениям, но такая возможность должна быть предоставлена любому измерению.

7. Динамическое управление разреженными матрицами -- OLAP-система должна обеспечивать оптимальную обработку разреженных матриц. Скорость доступа должна сохраняться вне зависимости от расположения ячеек данных и быть постоянной величиной для моделей, имеющих разное число измерений и различную степень разреженности данных.

8. Поддержка многопользовательского режима -- OLAP-система должна предоставлять возможность работать нескольким пользователям совместно с одной аналитической моделью или создавать для них различные модели из единых данных. При этом возможны как чтение, так и запись данных, поэтому система должна обеспечивать их целостность и безопасность.

9. Неограниченные перекрестные операции -- OLAP-система должна обеспечивать сохранение функциональных отношений, описанных с помощью определенного формального языка между ячейками гиперкуба при выполнении любых операций среза, вращения, консолидации или детализации. Система должна самостоятельно (автоматически) выполнять преобразование установленных отношений, не требуя от пользователя их переопределения.

10. Интуитивная манипуляция данными -- OLAP-система должна предоставлять способ выполнения операций среза, вращения, консолидации и детализации над гиперкубом без необходимости пользователю совершать множество действий с интерфейсом. Измерения, определенные в аналитической модели, должны содержать всю необходимую информацию для выполнения вышеуказанных операций.

11. Гибкие возможности получения отчетов -- OLAP-система должна поддерживать различные способы визуализации данных, т.е. отчеты должны представляться в любой возможной ориентации. Средства формирования отчетов должны представлять синтезируемые данные или информацию, следующую из модели данных в ее любой возможной ориентации. Это означает, что строки, столбцы или страницы должны показывать одновременно от 0 до N измерений, где N-- число измерений всей аналитической модели. Кроме того, каждое измерение содержимого, показанное в одной записи, колонке или странице, должно позволять показывать любое подмножество элементов (значений), содержащихся в измерении, в любом порядке.

12. Неограниченная размерность и число уровней агрегации -- исследование о возможном числе необходимых измерений, требующихся в аналитической модели, показало, что одновременно может использоваться до 19 измерений. Отсюда вытекает настоятельная рекомендация, чтобы аналитический инструмент мог одновременно предоставить хотя бы 15, а предпочтительно -- 20 измерений. Более того, каждое из общих измерений не должно быть ограничено по числу определяемых пользователем-аналитиком уровней агрегации и путей консолидации.

Дополнительные правила Кодда.

Набор этих требований, послуживших де-факто определением OLAP, достаточно часто вызывает различные нарекания, например, правила 1, 2, 3, 6 являются требованиями, а правила 10, 11 -- неформализованными пожеланиями. Токмаков Г.П. Базы данных. Концепция баз данных, реляционная модель данных, языки SQL. С. 68 Таким образом, перечисленные 12 требований Кодда не позволяют точно определить OLAP. В 1995 г. Кодд к приведенному перечню добавил следующие шесть правил:

13. Пакетное извлечение против интерпретации -- OLAP-система должна в равной степени эффективно обеспечивать доступ как к собственным, так и к внешним данным.

14. Поддержка всех моделей OLAP-анализа -- OLAP-система должна поддерживать все четыре модели анализа данных, определенные Коддом: категориальную, толковательную, умозрительную и стереотипную.

15. Обработка ненормализованных данных -- OLAP-система должна быть интегрирована с ненормализованными источниками данных. Модификации данных, выполненные в среде OLAP, не должны приводить к изменениям данных, хранимых в исходных внешних системах.

16. Сохранение результатов OLAP: хранение их отдельно от исходных данных -- OLAP-система, работающая в режиме чтения-записи, после модификации исходных данных должна результаты сохранять отдельно. Иными словами, обеспечивается безопасность исходных данных.

17. Исключение отсутствующих значений-- OLAP-система, представляя данные пользователю, должна отбрасывать все отсутствующие значения. Другими словами, отсутствующие значения должны отличаться от нулевых значений.

18. Обработка отсутствующих значений -- OLAP-система должна игнорировать все отсутствующие значения без учета их источника. Эта особенность связана с 17-м правилом.

Кроме того, Кодд разбил все 18 правил на следующие четыре группы, назвав их особенностями. Эти группы получили названия В, S, R и D.

Основные особенности (В) включают следующие правила:

Многомерное концептуальное представление данных (правило 1);

Интуитивное манипулирование данными (правило 10);

Доступность (правило 3);

Пакетное извлечение против интерпретации (правило 13);

Поддержка всех моделей OLAP-анализа (правило 14);

Архитектура «клиент-сервер» (правило 5);

Прозрачность (правило 2);

Многопользовательская поддержка (правило 8)

Специальные особенности (S):

Обработка ненормализованных данных (правило 15);

Сохранение результатов OLAP: хранение их отдельно от исходных данных (правило 16);

Исключение отсутствующих значений (правило 17);

Обработка отсутствующих значений (правило 18). Особенности представления отчетов (R):

Гибкость формирования отчетов (правило 11);

Стандартная производительность отчетов (правило 4);

Автоматическая настройка физического уровня (измененное оригинальное правило 7).

Управление измерениями (D):

Универсальность измерений (правило 6);

Неограниченное число измерений и уровней агрегации (правило 12);

Неограниченные операции между размерностями (правило 9).

Загрузка...